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Shear Modulus for Nonisotropic, Open-Celled Foams 
Using a General Elongated Kelvin Foam Model 

 
Roy M. Sullivan 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Louis J. Ghosn 

Ohio Aerospace Institute 
Brook Park, Ohio 44142 

Summary 
An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the 

elongation (rise) direction is derived using an elongated Kelvin foam model with the most general 
geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid 
material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the 
relation derived by others for isotropic foams when the unit cell is equiaxed. 

Introduction 
Over the years, there have been numerous attempts to develop equations that are capable of predicting 

the strength and the elastic properties of open- and closed-cell foams from a description of the foam 
microstructure and a measure of the cell dimensions. This endeavor requires selecting a suitable 
representative element to mimic the foam microstructure. Many of these micromechanics models have 
used a tetrakaidecahedron (a 14-sided polyhedron) to represent the foam microstructure. This choice 
follows from the work of Thomson (1887) who argued that the 14-sided polyhedron (with slightly curved 
faces) was the naturally preferred shape for soap bubbles and other foams as it is the shape that minimizes 
the surface area per unit volume and still packs to fill space. As a result, the tetrakaidecahedron model is 
widely known as the Kelvin foam model. 

Some of the more notable studies in this area are the works of Zhu, Knott, and Mills (1997), Warren 
and Kraynik (1997), Dement’ev and Tarakanov (1970), and Gong, Kyriakides, and Jang (2005). Zhu used 
an equiaxed tetrakaidecahedron and assumed that the behavior of open-celled foams could be simulated 
by treating the cell edges as structural elements possessing axial, bending, and torsional rigidity. They 
applied the minimum potential energy theorem to the unit cell deformation and developed equations for 
the Young’s modulus, the shear modulus, and Poisson’s ratio for isotropic, open-celled foams. These 
equations were derived in terms of the cell edge lengths, the edge cross-section properties, and the solid 
material properties.  

In some cases, the foam cells are elongated; as a result, these foams exhibit a nonisotropic mechanical 
behavior. Such is the case in spray-on foams where the cells become elongated in the rise direction during 
the foaming and rising process. To treat nonisotropic, open-celled foams, Dement’ev and Tarakanov 
(1970) used an elongated Kelvin model to derive equations for the elastic constants and compressive 
strengths in the principal material directions. The equations for the elastic constants were derived by 
considering the flexural deformation of the cell edges under the applied stresses. The compressive 
strength equations were obtained based on the critical (Euler) buckling load of the edges.  

Gong, Kyriakides, and Jang (2005) also adopted an elongated Kelvin unit cell to model nonisotropic 
foams. They improved upon the fidelity of the previous models by using Plateau borders to represent the 
edge cross sections and by allowing the dimensions of the cross section to vary along the edge length. 
They also included the effects of shear deformation.  
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The size and shape of the elongated Kelvin unit cell used by Dement’ev and Tarakanov (1970), Gong, 
Kyriakides, and Jang (2005), and others are defined by specifying two unit cell dimensions: either the cell 
height and cell width or the height-to-width ratio and one of the two cell dimensions. In the most general 
sense, however, an elongated tetrakaidecahedron has three independent dimensions. Sullivan, Ghosn, and 
Lerch (2008) recognized this shortcoming with the previous models and proposed using an elongated 
Kelvin model with three independent dimensions to model nonisotropic, open-celled foams. Following 
the same approach as Zhu, Knott, and Mills (1997), Sullivan, Ghosn, and Lerch (2008) applied the 
principle of minimum potential energy to the unit cell deformation and derived the equations for the 
Young’s modulus, Poisson’s ratios, and tensile strengths in the principal material directions, thereby 
establishing a foam micromechanics model using the most general Kelvin unit cell.  

This report is intended as a supplement to Sullivan, Ghosn, and Lerch (2008) as it uses the general 
Kelvin unit cell model and a similar potential energy approach to develop the equation for the shear 
modulus in the plane perpendicular to the elongated (rise) direction. Herein, the general Kelvin foam 
model is reviewed. Since the elongated Kelvin unit cell is symmetric, one-quarter of the Kelvin cell is 
chosen as the repeating unit cell. Displacement conditions are applied to the unit cell boundaries to ensure 
that the unit cell remains a representative repeating unit during shear deformation. The principle of 
minimum potential energy is applied to the unit cell deformation, yielding an algebraic equation for the 
shear strain in terms of the shear stress. From this, the equation for the shear modulus is derived. 

Elongated Kelvin Unit Cell 
The general elongated tetrakaidecahedron (Kelvin foam model) is a 14-sided polyhedron constructed 

from 8 hexagonal faces, 4 vertical rhombic faces, and 2 horizontal square faces (fig. 1). The vertical 
rhombic faces have sides of length L, and the horizontal square faces have sides of length b. The 
hexagonal faces have four sides of length L and two sides of length b. The inclination angle θ defines the 
orientation of the hexagonal faces with respect to the rise direction as well as the obtuse angle of the 
vertical diamond faces 2θ. The edges are the line segments formed by the intersection of multiple faces. 
Thus, the edges will be of length L or b. 
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Since the cell height H and cell width D are related to the edge lengths L and b and the inclination 
angle θ according to  
 
  bLDLH 2cos2andsin4 +θ=θ=  (1) 
 
the size and shape of the general elongated tetrakaidecahedron are defined by specifying three of the five 
unit cell dimensions shown in figure 1. 

In open-celled foams, all the solid mass is concentrated within the cell edges. The edges are assumed 
to behave like structural members, possessing axial, flexural, and torsional rigidity. They have cross-
sectional area A, bending moment of inertia I, and torsion constant J. The Young’s modulus of the solid 
material is denoted as E and the shear modulus as G.  

Unit Cell Deformation 
We first establish a Cartesian coordinate system XYZ such that the Z-axis is oriented in the elongation 

or rise direction (fig. 2). The X-axis is parallel to a line normal to two of the vertical rhombic faces, and 
the Y-axis is parallel to a line normal to the other two vertical rhombic faces. We seek to derive the 
equation for the foam shear modulus Gxy. For this purpose, we adopt the structural unit shown in red in 
figure 2 as the representative repeating unit. This repeating unit is a one-quarter segment of the Kelvin 
foam unit cell shown in figure 1.  

Next, we establish the XsYsZ-coordinate system that is oriented with respect to the XYZ-system by a 
45° counterclockwise rotation about the Z-axis. The repeating structural unit is bounded by six symmetry 
planes: two planes parallel to the YsZ-plane, two planes parallel to the XsZ-plane, and two planes parallel 
to the XsYs-plane. Since the members AN, AO, BJ, BK, DM, DL, EP, and EQ all lie within the 
XsYs-symmetry planes, they are shared by two adjacent unit cells. As such, we assume that within the unit 
cell, they possess a cross-sectional area A/2 and a bending moment of inertia I/2. The repeating structural 
unit and symmetry planes constitute the repeating unit cell for determining the shear modulus Gxy. 
 The normal stresses τ and −τ are applied in the Xs- and Ys-directions, respectively, as shown in 
figure 3. We define the displacements of the unit cell with respect to the unit cell center at point C and 
assume that all displacements and rotations at point C are zero. The applied loading results in a unit cell 
displacement of 2u in the Xs-direction and −2u in the Ys-direction, where both displacements are 
symmetric about point C. There is no displacement of the unit cell in the Z-direction (fig. 4).  
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 In the deformed structure, we assume that the symmetry planes remain orthogonal. Any edge that is 
initially normal to a symmetry plane boundary will remain normal to it after the deformation. Thus, the 
points J, K, L, M, N, O, P, and Q do not rotate during the deformation. Furthermore, the half-edges AN, 
AO, BJ, BK, DL, DM, EQ, and EP must remain in their respective symmetry planes. Thus, the points A, 
B, D, and E translate within their respective symmetry planes and the only rotation of these points is about 
the Z-axis.  Point B translates in the X-direction by an amount v and point A translates by an amount –v. 
Points D and E translate in the Y-direction an amount v and –v, respectively. Points A and B undergo a 
clockwise rotation ω about the Z-axis, and points D and E undergo a counterclockwise rotation ω. 

We note that as a result of similarity and symmetry, the deformed shape and the deformation energy 
of member BC are the same as those of members CD, AC, and CE. Likewise, the deformed shape and 
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deformation energy of the members BK, DL, AN, and EP are equivalent and those of members BJ, DM, 
AO, and EQ are equivalent. Furthermore, the axial tension in member BK is equal to the axial 
compression in member BJ, and the bending moment in BJ is equal to the bending moment in BK. Thus, 
the deformation energy of the entire unit cell can be determined from the strain energy of deformation of 
only members BC and BK. 

Strain Energy of Member BC 
 We will make use of a third coordinate system X′Y′Z′, where the Y′-axis is oriented along the length 
of member BC as shown in figure 5. Since there is no normal stress applied to the unit cell in the Y- or Z-
direction (see fig. 3), the axial force NBC, the shear force Vz′, as well as the bending moment about the X′-
axis Mx′, must be zero throughout the length of the member. Furthermore, there is no deformation of 
member BC in the YZ- (or Y′Z′-) plane. The only deformation energy in member BC is that associated 
with bending about the Z′-axis BC

zM ' and the torsional deformation associated with BC
yM ' . The 

displacements and rotations at point B in the X′Y′Z ′-coordinate system are summarized as 
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The member end forces and moments at point B are shown in figure 5(a), and the active degrees of 
freedom at B are shown in figure 5(b). 

Considering the deformation of member BC in the X′Y′-plane, the member end displacement and 
rotation at point B are related to the member end force and moment (fig. 6), using the first and second 
moment-area theorems as 
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respectively. Solving equations (2) and (3) simultaneously, we obtain 
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Considering the torsional deformation of member BC yields 
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where s is the local coordinate oriented along member BC, having the value s = 0 at point B and s = L at 
point C. Using equations (4), (5), and (6), the strain energy may be written in terms of the displacements v 
and ω as 
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Strain Energy of Member BK 
Member BK remains in the symmetry plane defined by the points A, B, and K. The only deformation 

energy in member BK is that associated with the axial extension and bending about the Z-axis. There is no 
Ys-direction loading on member BK at point K. Thus, there is no transverse (shear) force in the member, 
and the bending moment about the Z-axis is constant along the member length. Transforming the 
displacements at point B into the XsYsZ-coordinate system, we have 0,2,2 =−== B

z
B
y

B
x uvuvu

ss
. 

The member end forces and moments in member BK are shown in figure 7(a), and the member end point 
displacements and rotations are shown in figure 7(b). 

The equation for the axial extension of member BK is 
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The end point rotations may be written in terms of the bending moment Mz by the first moment-area 
theorem as 
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Rewriting the previous two equations, we obtain 
 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
vu

b
EANBK  (8) 

 

  ω=
b
EIM BK

z  (9) 

 
 

 
 
 
 



NASA/TM—2008-215430 8

The strain energy for member BK is 
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which, by substituting equations (8) and (9), may be written in terms of the displacements u, v, and ω as 
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Derivation of Shear Modulus Equation 
As a result of the symmetry and similarity of the unit cell deformation, the strain energy for the 

repeating unit cell shown in figure 2 is 
 
  BKBC UUU 84 +=  (11) 
 
The work done on the unit cell by the applied loading is 
 
  ( ) ubLLW τ+θθ= cos2sin8  (12) 
 
Substituting equations (7) and (10) into (11) and applying the minimum potential energy theorem  
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Solving equations (13) simultaneously yields 
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The principal strains are ( )bLu +θcos22  and ( )bLu +θ− cos22 , so the shear strain is 

( )bLu +θ=γ cos24 . Since τ = Gxyγ, then 
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Rearranging equation (15), we obtain finally 
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which is the expression obtained by Zhu, Knott, and Mills (1997) for isotropic foams.  

Concluding Remarks 
The equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the 

elongation (rise) direction was derived. The equation was derived using an elongated Kelvin foam model 
with the most general geometric description, one that requires specifying three unit cell dimensions to 
define its size and shape. The shear modulus is a function of the unit cell dimensions, the solid material 
Young’s modulus E and shear modulus G, and the edge cross-section properties A, I, and J. It can be 
shown that the shear modulus equation derived from the most general elongated Kelvin unit cell shape 
reduces to the relation derived by Zhu, Knott, and Mills (1997) for isotropic foams when the unit cell is 
equiaxed.  
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